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Crystallized vortex crystals
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Abstract. Numerical simulations of the equations of motion of 300 charged particles confined to a plane
with an additional magnetic field orthogonal to the plane reproduce recently observed self-organization
of non-neutral plasmas into a small number of interacting vortices. In the presence of damping we ob-
serve crystallized vortices, i.e. vortices with regular internal structure. We also observe crystallized vortex
crystals, i.e. geometric patterns of crystallized vortices. Fractal vortex arrangements are investigated and
found to be stable. Our results are relevant for quantum dots and artificial atoms.

PACS. 36.40.-c Atomic and molecular clusters – 32.80.Pj Optical cooling of atoms; trapping – 52.25.Wz
Nonneutral plasmas

The experimental discovery of vortex crystals [1] marks
the birth of a new paradigm in the physics of charged
plasmas [2]. The plasma vortices correspond to regions
of enhanced plasma density. They are called vortices be-
cause two-dimensional one-component plasmas are well
described by hydrodynamic equations and the plasma den-
sity is directly proportional to the vorticity of the fluid
analog of the plasma [1–3]. The relationship between vor-
ticity and plasma density is intuitively clear since because
of the Lorentz force regions of higher plasma density ro-
tate faster. Vortex crystals are created by self-organization
of a quasi two-dimensional dense gas of strongly interact-
ing charged particles stored in a cylindrical trap with ax-
ial magnetic field [1]. The observed geometric patterns of
vortex crystals resemble those of ion crystals that have
been seen before as ordered structures in electrodynami-
cal traps [4–9]. The patterns are understood as minimal
energy configurations of vortices, i.e., the result of the
vortices’ tendency to minimize the energy of their mu-
tual electrostatic repulsion. We believe that the results
obtained in this paper are also of relevance for quantum
dots in strong magnetic fields [10,11]. This is so because
quantum dots with a controlled number of electrons can
nowadays be fabricated [12]. Moreover, in quantum dots
the electrons are naturally confined to two-dimensional
sheets [10,11]. Thus in this case the two-dimensionality
imposed by our computations is a very good approxima-
tion.

In this paper we report the results of our numerical
simulations of two-dimensional plasmas of charged parti-
cles in a strong magnetic field. Starting from low-entropy
particle configurations our computations reproduce the
tendency of the charged plasma to organize itself into a
small number of vortices. Adding a small damping force we
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observe the formation of internal order of the vortices, very
similar to the ordered geometric patterns of cold electron
crystals predicted to occur as the lowest energy configura-
tions in storage rings [13–15]. Thus, we obtain crystallized
vortices. Crystallized vortices may or may not form a geo-
metric pattern. If they do, we obtain a crystallized vortex
crystal. To prove the existence of crystallized vortices and
crystallized vortex crystals is the central focus of this pa-
per.

Crystallized vortex crystals show order on two vastly
different length scales. The large length scale corresponds
to the distances between vortices in their ordered crystal
arrangement. This is the length scale observed in the ex-
periments [1]. The small scale corresponds to the ordered
lattice of electrons within the vortices themselves. A natu-
ral question to ask is the following: Is it possible to produce
ordered behaviour on more than two lengths scales? This
is indeed the case. We construct fractal vortex crystals
with order on many length scales. Our numerical simu-
lations show that such arrangements are stable over the
observation time allowed by our computational resources.

The formation of self-organized vortices is not re-
stricted to electron plasmas. Ion plasmas are expected to
show the same organization phenomena. In the case of
an ion plasma laser cooling [16,17] offers a viable method
for implementing the damping necessary to produce crys-
tallized vortices. The type of ion species is not critical.
Crystallized vortex crystals should be observable with any
type of ions. A convenient ion species, e.g., are Mg+ ions
for which efficient laser cooling has already been demon-
strated (see, e.g., [5,8,9]).

We now turn to the details of our numerical simula-
tions. In order to demonstrate the self-organization phe-
nomenon we solve the Newtonian equations of motion of
300 ions restricted to move in the (x, y) plane. The ions
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interact via their mutual Coulomb repulsion in the pres-
ence of a strong magnetic field parallel to the z-direction.
The two-dimensional model is chosen mainly for numer-
ical convenience. It is, however, an excellent approxima-
tion to experimental situations such as, e.g., quantum dots
[10,11] and plasma columns in cylindrical Penning traps
[1,2]. The equations of motion of our model are given by

mr̈i = qṙi ×B− γṙi +
q2

4πε0

N∑
j 6=i

ri − rj
| ri − rj |3

, (1)

where m is the mass of the particles, ri is the position
of particle number i, q is the charge of the particles, B
is the applied magnetic field, γ is the damping constant
and ε0 is the dielectric constant. With the help of the cy-
clotron frequency ωc = qB/m we define the unit of time as
T = 1/ωc. The unit of length is chosen to be l = 1 µm. In-
troducing the dimensionless time τ = t/T , the dimension-
less positions ρ = r/l, the dimensionless damping constant
Γ = γ/(qB) and the coupling constant c = m/(4πε0B

2l3)
we obtain the dimensionless equations of motion

ρ̈i = ρ̇i × ẑ− Γ ρ̇i + c

N∑
j 6=i

ρi − ρj
| ρi − ρj |3

, (2)

where ẑ is the unit vector in the z-direction. We choose
c = 0.1 for all the numerical computations reported be-
low. For the demonstration of the self-organization phe-
nomenon we choose a low-entropy initial condition of the
ion plasma. The initial velocities of the 300 ions are cho-
sen to be zero. The positions of the ions are chosen ran-
domly within a two-dimensional ring of diameter d = 100
and width w = 1 (see Fig. 1a). Initial conditions of
this type are generated experimentally by using appro-
priately shaped electrodes [1] or ion sources. Once the
initial conditions are chosen at τ = 0, we solve the equa-
tions of motion (2) for Γ = 0 over a long period of time
0 < τ < τmax = 40 000. This time interval corresponds to
more than 6000 cyclotron revolutions. Because of the rel-
atively low plasma density in our computations radiative
damping is negligible in this time interval. Freeze frames of
the resulting motion after τ = 3000, 16 000 and τ = 39 990
are shown in Figures 1b–d, respectively. Figure 1b shows
the initial break-up of the ring-configuration of particles
into a large number of small vortices. In the course of
time, small vortices merge to form larger vortices. This is
shown in Figure 1c. Figure 1d, finally, shows that a small
number of large vortices is stable for a very long time. The
organization of the initially random ring of particles into
rotating vortices separated by gaps of low ion density is
clearly visible.

For Γ = 0 our simulations did not produce geometri-
cally ordered highly symmetric vortex crystals as found in
the experiments [1]. This may have two reasons. (i) Vor-
tex crystals are obtained only in the presence of a damping
force or (ii) we did not wait long enough for the vortices
to settle down into a geometric pattern.

The following argument is in favour of (i). There is no
a priori reason why vortices should always settle down into

a crystalline configuration. Suppose we start with N ≥ 3
vortices consisting of nk, k = 1, ..., N particles each. If
the vortices are well separated from each other, we may
approximate the complicated

∑
nk-body problem by an

N -body problem of vortices with charge nkq each. But
even the resulting effective problem of N bodies is still a
complicated many-body problem which is known to pos-
sess chaotic solutions [18]. Thus in the absence of damp-
ing and for N ≥ 3 it is not clear why the ordered state
should be favoured over the chaotic state. Only in the case
N = 2 is there always an ordered “crystal” since the two-
body problem separates and thus is exactly integrable and
therefore non-chaotic. The case N = 2 corresponds to a
“double star” configuration which, we checked, is stable
over as long a period of time as we were able to follow it
numerically (τmax = 4.5×105 for n1 = n2 = 50 particles).

The following observation is in favour of argument
(ii). As is evident, e.g., from Figure 1d the regions be-
tween the prominent vortices are filled with a low-density
“background gas” consisting of particles that are not (yet)
absorbed into the vortices. The vortices have to move
through the background gas which, although the system
is Hamiltonian and the total energy is conserved, may re-
sult in the damping of some macroscopic degrees of free-
dom such as the center-of-mass coordinates of the vortices.
Thus, by this mechanism, and given enough time, we can
imagine the vortices to crystallize. We were not able to
follow our 300-particle ensemble long enough to see any
significant damping by the background gas. Nevertheless
this mechanism may be responsible for the formation of
vortices in actual experiments [1].

In order to prove the existence of crystallized vortices
we switched on the damping in our numerical simulations.
This was done in the following way. We started an en-
semble of 300 particles as depicted in Figure 1a. We then
evolved this ensemble without damping (Γ = 0) for a time
interval of 0 < τ < 20 000. At τ = 20 000 we switched on
the damping force with Γ = 0.1. Figure 2 shows the result-
ing particle configuration at τ = 21 000. It is clearly visible
that the five major vortices have acquired a regular inter-
nal structure. We recommend this two-step procedure for
creating crystallized vortices experimentally. In practice
this two-step process may be realized by first evolving the
particle ensemble over a time interval ∆t0 without laser
cooling, switching on laser cooling only after the waiting
time ∆t0. The ordered internal structure of the crystal-
lized vortices reminds of the structure of a Wigner crystal
[19].

We now turn to the central point of this paper, the
demonstration of the existence of crystallized vortex crys-
tals. In order to contrast the crystallized vortex crystal
with the established phenomenon of vortex crystals [1] we
examine once more the results of the computer simulation
of the 300-ion ensemble illustrated in Figure 1. This time
we pick a freeze frame at τ = 20 000. It is shown in Fig-
ure 3a. We see a near-geometric arrangement of vortices
not unlike those seen in the experiments [1]. Examining
their internal structure Figure 3a suggests that the lo-
cations of the ions within a vortex are close to random.
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Fig. 1. Freeze frames of the time evolution of a cloud of 300 particles started on a ring of diameter d = 100 and width w = 1
with random positions and initial velocity zero. No damping is present in the computations (Γ = 0). (a) Initial condition (τ = 0),
(b) τ = 3000, (c) τ = 16 000, (d) τ = 39 990.

Fig. 2. Formation of ordered internal structure of a collection
of vortices in the presence of damping.

This is consistent with the dynamical picture developed
above, namely that the dynamics of strongly interacting
charged particles in a magnetic field is chaotic. In order
to substantiate the irregular nature of the ion locations
we present in Figure 3b the probability distribution of the
nearest neighbour spacings. The x-axis of this diagram is

the nearest neighbour spacing normalized to the average
spacing of ions in Figure 3a. The normalized spacing is de-
noted by s. The histogram in Figure 3b shows the spacing
probability taken from the 300 data points of Figure 3a.
The smooth line in Figure 3b is the spacing probability
expected on the basis of ions sprinkled at random and
with uniform distribution onto the (x, y) plane [20]. Inter-
estingly this distribution is a “Wigner distribution” which
also occurs in random matrix theory [20,21]. The numer-
ical data (histogram) in Figure 3b are consistent with the
Wigner distribution (full line). This lends strong support
to the conjecture that there is no internal order in the
ion arrangement shown in Figure 3a. Further support is
derived from a computation of the plasma coupling pa-
rameter Γc. It is the ratio of the average Coulomb inter-
action energy between two ions and their average kinetic
energy [13–15]. Molecular dynamics computations estab-
lished [13–15] that there are three important regimes for
the coupling parameter. (i) Γc � 1, (ii) Γc ∼ 1 and (iii)
Γc � 1. The particles behave like a gas in regime (i), they
exhibit liquid behaviour in regime (ii) and they crystallize
in regime (iii). Computing Γc for the ion configuration
shown in Figure 3a we obtain Γc ∼ 0.1� 1. This provides
independent confirmation that the internal structure of
uncooled vortices is gas-like and not ordered.
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Fig. 3. Near-geometric arrangement of large vortices with-
out internal order. (a) Freeze frame (τ = 20 000) of 300 ions
started from the same initial condition as in Figure 1a. No
damping is present (Γ = 0). The histogram in (b) shows the
normalized nearest neighbour spacing distribution of the par-
ticles whose positions are shown in (a). The smooth line is the
nearest neighbour spacing distribution corresponding to un-
correlated particles sprinkled randomly and uniformly on the
(x, y) plane.

We now repeat the run illustrated in Figure 1, but with
damping (Γ = 0.01) switched on right from the start. Ex-
amining the ion configuration at τ = 20 000, we obtain
the ion locations shown in Figure 4a. This time the vor-
tices arrange in a regular geometric pattern reminiscent
of both, the ion crystals obtained in Paul traps [5,6,8,
9] and the vortex crystals obtained in experiments with
one-component plasmas [1]. But in addition to the order
on the largest length scale (the scale of the five vortices)
we also observe that the internal structure of the vortices
is now far from random. The internal structure itself re-
sembles a Coulomb crystal as obtained, e.g., in molecu-
lar dynamics computations for crystallized beams in ion
storage rings [14,15]. Figure 4a shows that the internal
crystalline structure of the vortices is not perfect. It con-
tains faults and dislocations. The reason is probably that
we had to choose a relatively large damping in order to
make the computations feasible. This however leads to a
relatively fast cooling process resulting in an imperfect
crystal. Nevertheless it is clear from Figure 4a that the

Fig. 4. Crystallized vortex crystal obtained from the same
initial condition as shown in Figure 1a, but with the damp-
ing switched on (Γ = 0.01). (a) In contrast to Figure 3a the
vortices show internal crystalline structure and the vortices
themselves are ordered geometrically. (b) The nearest neigh-
bour distribution. It is clearly peaked at the lattice constant
(s = 1) and shows a void at small distances.

sub-structure of the five vortices is dominated by strong
correlations and order. Thus, the vortex crystal shown in
Figure 4a is qualitatively different from the vortex crystal
shown in Figure 3a. In order to distinguish the two types
of crystal from each other we coined the name “crystal-
lized vortex crystal” which concisely describes the novel
features of the vortex crystal shown in Figure 4a. In order
to support the claim of an ordered sub-structure of the
vortex crystal shown in Figure 4a we computed the near-
est neighbour spacing statistics of the ion arrangement in
Figure 4a. It is shown as the histogram in Figure 4b, again
versus the normalized spacing s. Comparing the probabil-
ity distribution in Figure 4b with the probability distri-
bution in Figure 3b we see that the two distributions are
qualitatively different. While the distribution in Figure 3b
is consistent with a random ensemble of ions, the distribu-
tion in Figure 4b is peaked at the lattice constant (s = 1)
and is vanishingly small for a large neighbourhood around
s = 0. Both the peak at s = 1 and the void in the interval
0 < s < 0.5 support the notion of a crystalline structure.
We also computed the plasma coupling parameter Γc for
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Fig. 5. Self-similar fractal vortex crystal.

the crystallized vortex crystal and found it to be far in ex-
cess of 100. This is easily explained. Over the time interval
∆τ = 20 000 used to produce Figure 4a all the random
motion of the ions is essentially dissipated (Γ∆τ = 200).
Thus we are deep in the strong coupling regime (iii) where
crystallization is expected. Thus Figure 4 establishes the
existence of crystallized vortex crystals.

Our fourth and final numerical simulation concerns the
creation of a fractal vortex crystal. A fractal vortex crystal
is the natural continuation of the idea of having order on
two length scales (such as in the case of a crystallized vor-
tex crystal) to a vortex crystal with order on many length
scales. Thus a fractal vortex crystal consists of particles or-
biting each other orderly on many different length scales.
The simplest fractal vortex crystal is a self-similar vortex
crystal. We illustrate the idea of a self-similar vortex crys-
tal with a set of particles arranged in hierarchies of two. It
is shown in Figure 5. The initial condition consists of 16
particles arranged symmetrically on the y axis as shown
in Figure 5a. It consists of four hierarchies of dumbells
with a self-similarity factor of 5. We followed the motion
of this arrangement over the time interval 0 < τ < 10 000.
Figure 5b shows the final result of the particle positions
at τ = 10 000. It proves that the crystal is stable over the
observation time.

In this paper we presented the results of two-
dimensional numerical simulations of up to 300 strongly

coupled particles under the combined influence of their
mutual Coulomb interaction and an additionally applied
strong magnetic field orthogonal to the plane of motion
of the particles. We were able to show the organization of
particles into regions of large particle density, called vor-
tices, and a practically empty space between them filled
only by a low-density background gas formed by particles
that are not incorporated into the high-density vortices.
In the absence of damping we were not able to see the ar-
rangement of vortices into regular geometric patterns. In
the presence of damping we obtained crystallized vortices
as well as geometric patterns of crystallized vortices, i.e.
crystallized vortex crystals. In addition we showed that
fractal vortex crystals exist and are stable. Fractal vortex
crystals are particle ensembles organized in clusters that
orbit each other on ever finer length scales. We hope that
crystallized vortex crystals as well as fractal vortex crys-
tals may soon be investigated experimentally. This is pos-
sible since some species of particles allow for efficient laser
cooling which serves as an implementation of the damping
mechanism present in the equations of motion (1).
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Forschungsgemeinschaft (SFB 276).

References

1. K.S. Fine, A.C. Cass, W.G. Flynn, C.F. Driscoll, Phys.
Rev. Lett. 75, 3277 (1995).

2. T.M. O’Neil, Phys. Scr. T59, 341 (1995).
3. J. Miller, P.B. Weichman, M.C. Cross, Phys. Rev. A 45,

2328 (1992).
4. R.F. Wuerker, H. Shelton, R.V. Langmuir, J. Appl. Phys.

30, 342 (1959).
5. F. Diedrich, E. Peik, J.M. Chen, W. Quint, H. Walther,

Phys. Rev. Lett. 59, 2931 (1987).
6. D.J. Wineland, J.C. Bergquist, W.M. Itano, J.J. Bollinger,

C.H. Manney, Phys. Rev. Lett. 59, 2935 (1987).
7. J. Hoffnagle, R.G. Devoe, L. Reyna, R.G. Brewer, Phys.

Rev. Lett. 61, 255 (1988).
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9. R. Blümel, C. Kappler, W. Quint, H. Walther, Phys. Rev.

A 40, 808 (1989).
10. M.A. Kastner, Physics Today 46, 24 (1993).
11. D. Heitmann, J.P. Kotthaus, Physics Today 46, 56 (1993).
12. B. Meurer, D. Heitmann, K. Ploog, Phys. Rev. Lett. 68,

1371 (1992).
13. J.P. Schiffer, P. Kienle, Z. Phys. A 321, 181 (1985).
14. A. Rahman, J.P. Schiffer, Phys. Rev. Lett. 57, 1133 (1986).
15. R.W. Hasse, J.P. Schiffer, Ann. Phys. (N.Y.) 203, 419

(1990).
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